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We present the implementation of optimal control into the open source simulation package SIMPSON for
development and optimization of nuclear magnetic resonance experiments for a wide range of applica-
tions, including liquid- and solid-state NMR, magnetic resonance imaging, quantum computation, and
combinations between NMR and other spectroscopies. Optimal control enables efficient optimization
of NMR experiments in terms of amplitudes, phases, offsets etc. for hundreds-to-thousands of pulses
to fully exploit the experimentally available high degree of freedom in pulse sequences to combat vari-
ations/limitations in experimental or spin system parameters or design experiments with specific prop-
erties typically not covered as easily by standard design procedures. This facilitates straightforward
optimization of experiments under consideration of rf and static field inhomogeneities, limitations in
available or desired rf field strengths (e.g., for reduction of sample heating), spread in resonance offsets
or coupling parameters, variations in spin systems etc. to meet the actual experimental conditions as
close as possible. The paper provides a brief account on the relevant theory and in particular the compu-
tational interface relevant for optimization of state-to-state transfer (on the density operator level) and
the effective Hamiltonian on the level of propagators along with several representative examples within
liquid- and solid-state NMR spectroscopy.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In the recent few years optimal control [1–3] has found its way
into nuclear magnetic resonance as a powerful tool for efficient de-
sign and optimization of experiments for applications in imaging
[4–7], liquid-state NMR [8–13], solid-state NMR [14–20], quantum
computation [21–26], and dynamic nuclear polarization/electron-
nuclear interactions [27–31]. This method, originally being intro-
duced for optimizations in engineering and economy, is very
attractive for optimization problems dealing with complex internal
Hamiltonians and a large number of external manipulation param-
eters. Opposed to the small space of variables typically associated
with standard non-linear optimization methods [32], optimal con-
trol is capable of handling hundreds-to-thousands of free variables
within an optimization and provides an optimal solution much fas-
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ter than standard optimization procedures in such cases. This
opens up interesting new possibilities for performing experiment
design which takes into account all typically available information
on (i) the relevant nuclear spin systems (size, typical nuclear spin
interaction parameters, and variations in these), (ii) the available
experimental manipulations (external magnetic field, rf fields, lim-
itations and inhomogeneities in these), and (iii) relevant experi-
mental conditions (sample spinning, dynamics).

Using optimal control, it is possible to extend the numerical de-
sign and optimization of NMR methods [33,34] to fully exploit the
available experimental degrees of freedom to reach the optimal
experiment, as for example expressed in terms of universal bounds
on spin dynamics [35–39]. The outcome of numerical optimiza-
tions with optimal control may not only provide optimum experi-
ments for direct applications, but may also provide new insight
into, e.g., the maximal possible transfer efficiencies, which then
may be used (i) as an evaluation of whether there is room for
improvements of state-of-the-art experiments and (ii) to provide
new inspiration to alternative design strategies, for example based
on average (or effective) Hamiltonian theory [40–43]. As an exam-
ple of the latter, it became clear from optimal control design of het-
eronuclear coherence transfer schemes in solid-state NMR [14]
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Fig. 1. Schematic illustration of optimal control design of multiple-pulse experi-
ments. (a) The pulse sequence consists of many short pulses with variable
amplitude and phase. (b) The effect of the pulse sequence is monitored by forward
and backward evolution of initial state qð0Þ and the target state vðTÞ, respectively.
(c) Utilizing the fact that the two paths are different, corrections to pulse
parameters are calculated in terms of a gradient.
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that optimal control can increase the efficiency of so-called c-en-
coded dipolar recoupling experiments [44] by compensating more
efficiently for spread in another crystallite orientation angle (b)
leading to the concept of COMpensation for Beta (COMB) compos-
ite refocusing [45]. This led to an analytical single-spin optimiza-
tion strategy for improved dipolar recoupling, which in a
subsequent phase was feeded back to fast optimal control single-
spin numerical optimizations of two-spin dipolar recoupling
experiments [20]. Another option is to use optimal control directly
as a means to analytically design optimal experiments [46–53].

In this paper, we address software implementation of optimal
control for easy conduction of experiment optimizations for spe-
cific applications, to improve robustness towards the parameters
that are essential for the intended experiments or simply to obtain
a test on the maximum possible efficiency of an experiment to
compare with existing methods. The paper serves as a description
of (and manual for) an extension of the powerful and widely used
simulation package SIMPSON [54] to include optimal control appli-
cations [14]. The combined software is released as open source
software in a new version of SIMPSON. The paper is organized as
follows. First the relevant theory is discussed briefly with reference
to the original literature for a more detailed account. Subsequently,
we introduce the novel features relevant for SIMPSON optimal con-
trol calculations, and finally provide a few relevant examples illus-
trating these features and demonstrating some of the flexibility of
an optimal control numerical tool for NMR experiment design and
optimization.

2. Theory

The spin dynamics of NMR experiments is typically expressed in
terms of the evolution of density operators as expressed by the
Liouville-von-Neuman equation

_qðtÞ ¼ �i½HðtÞ; qðtÞ� ð1Þ

addressing cases without relaxation. In general terms, the Zeeman
frame Hamiltonian may be described as

HðtÞ ¼ HintðtÞ þ HrfðtÞ; ð2Þ

HrfðtÞ ¼
X

i

xIix
rf ðtÞIix þxIiy

rf ðtÞIiy; ð3Þ

HintðtÞ ¼ HCSðtÞ þ HJðtÞ þ HDðtÞ þ HQ ðtÞ: ð4Þ

Hrf ðtÞ expresses external manipulations in terms of rf irradiation,
here expressed as a summation over x- and y-phase contributions
for the involved spins (or spin species) through continuous func-
tions in time t. In numerical calculations the pulses are for practical
reasons represented in digitized form as a train of pulses appropri-
ately reflecting the time variation. HintðtÞ collects contributions
from internal nuclear spin interactions, including chemical shifts,
scalar (J) couplings, dipole–dipole couplings, and quadrupolar cou-
plings. The internal Hamiltonian for the various interactions may
typically be cast in the form of a Fourier series

HkðtÞ ¼
X2

m¼�2

xðmÞk eimxr tOk; ð5Þ

where time dependencies, e.g., due to sample spinning with angular
frequency xr , is expressed through the exponentials. Expressions
for the angular frequencies of the isotropic and anisotropic (i.e., ori-
entation dependent) internal nuclear spin interactions xðmÞk as well
as the associated spin operators Ok for typical solid- and liquid-state
NMR applications can be found in Ref. [54].

For a generalized pulse sequence consisting of a train of N
pulses acting consecutively on the initial spin density operator
qð0Þ from time 0 to time tN ¼ T , the density operator at the end
of the pulse sequence takes the form
qðTÞ ¼ UNðtN; tN�1Þ . . . U2ðt2; t1ÞU1ðt1;0Þqð0Þ
Uy1ðt1;0ÞUy2ðt2; t1Þ . . . UyNðtN; tN�1Þ

ð6Þ

with each propagator defined as Uðtkþ1; tkÞ ¼ bT expf�i
R tkþ1

tk
HðtÞdtg

using the Hamiltonian in Eq. (2) and the Dyson time-ordering oper-
ator bT . The aim of the optimization is to adjust the external manip-
ulation parameters, which are the instantaneous rf field amplitudes
xIix

rf ðtkÞ and xIiy
rf ðtkÞ in Eq. (3), to provide the best performance of the

experiment. This amounts to systematic variation of the amplitudes
in Fig. 1 to obtain the optimal experiment.

The performance may be evaluated as the highest transfer effi-
ciency transferring a given initial state operator, e.g., qð0Þ ¼ A to a
desired destination spin operator C as expressed by the density
operator at time T, qðTÞ ¼ cmaxC þ B, where the coefficient cmax is
maximized and B contains all residual operator terms. Henceforth,
we will refer to this situation as state-to-state transfer. In cases of
transfer between Hermitian operators this amounts to optimization
of the overlap between C and the transformed operator
qðTÞ ¼ Uqð0ÞUy as expressed in terms of a standard inner product
between the operators

Ufin ¼ hCjqðTÞi ¼ Tr CyUqð0ÞUy
n o

: ð7Þ

In cases of transfer between non-Hermitian operators, the transfer
function defined in Eq. (7) is complex valued in general and can
not be used directly. In this case there are several possible replace-
ments for Ufin, for example just evaluating the real part or the norm
squared of the transfer function. For implementation within SIMP-
SON, we have chosen the latter case:

Ufin ¼ hCjqðTÞij j2 ¼ Tr CyUqð0ÞUy
n o��� ���2: ð8Þ

We note that this cost function leads to a multitude of solutions, as
discussed previously in the context of unitary bounds on spin
dynamics [36,38].

For other applications, it is relevant to optimize the effective
Hamiltonian Heff (or the effective propagator Ueff ) to a desired effec-
tive Hamiltonian HD (or the desired propagator UD) which amounts
to optimization of
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Tr UyDUeff
� �

¼ Tr eiHDT e�iHeff T
� �

: ð9Þ

In practice, the total phase of a propagator is irrelevant and it proves
convenient to release the reproduction of the desired propagator to
all variations including a phase u, and optimize

Ufin ¼ je�iuUyDUeff j
�� ��2 ¼ Tr UyDUeff

� ��� ��2 ð10Þ

for all values of u [8,17].
A third frequently encountered situation could be optimization

of transfer into a given state while efficiently suppressing transfer
to other specified states or optimizing a certain effective Hamilto-
nian while efficiently suppressing others. A typical example for the
first case could be optimization of spin-state selective NMR exper-
iments where only one of two possible spin-states (e.g., IaSþ) is de-
sired while the other should be suppressed (e.g., IbSþ) [55–58].

In optimal control, the term, Ufin in Eqs. (7)–(10) is typically re-
ferred to as the ‘‘final cost” (explaining the subscript ‘‘fin”) in an
overall cost function that may contain other terms as well. One
of the additional terms can be a ‘‘running cost”, which may prevent
achieving the optimum because the running cost is too high. In
NMR applications this could, for example, be a penalty limiting
the overall consumption of rf power (energy) throughout the pulse
sequence as expressed through the term

Urf ¼ k
X

i

X
q¼x; y

XN�1

k¼0

xIiq

rf ðtkÞ
� �2

Dtk; ð11Þ

where Dtk ¼ tkþ1 � tk. We note that the weight of the running cost
may be regulated through the factor k. Obviously, this running cost
is only one of many options for penalties on the control fields and
their time variation.

In recent NMR applications optimal control optimization have
been conducted using the gradient based optimization procedure
GRAPE (Gradient Ascent Pulse Engineering) [8]. This method estab-
lishes a gradient which in an iterative fashion is used to change the
amplitudes of the control fields to improve the pulse sequence to
optimum performance.

For the state-to-state optimization, the gradient is calculated on
the basis of the ‘‘forward-transformed” density operator in Eq. (6)
and a ‘‘back-transformed” operator (cf. Fig. 1b)

vðtjÞ ¼ Uyjþ1 tjþ1; tj
� �

. . . UyNðtN ; tN�1ÞCUNðtN; tN�1Þ . . . Ujþ1 tjþ1; tj
� �

;

ð12Þ

reusing the same propagators as for the ‘‘forward-transformed”
density operator in Eq. (6). Equipped with Eqs. (6)–(8), it is possible
to describe a gradient which in an iterative fashion can be used to
modify the rf field amplitudes xIix

rf ðtjÞ and xIiy

rf ðtjÞ associated with
the spin operators Iix and Iiy, respectively, for each pulse in the pulse
sequence. For transfer between Hermitian operators, the gradient
for the final cost takes the form [8]

@Ufin

@xIiq

rf ðtjÞ
¼ vðtjÞj � iDtj Iiq;qðtjÞ

	 
� �
; ð13Þ

corresponding to an iterative update of the rf fields by

xIiq

rf ðtjÞ ! xIiq

rf ðtjÞ þ eTr vyðtjÞiDtj Iiq;qðtjÞ
	 
� �

; ð14Þ

where q ¼ x or y and e is a small real number. In the case of non-
Hermitian operators, the gradient of the final cost defined in Eq.
(8) amounts to

@Ufin

@xIiq

rf ðtjÞ
¼ 2Im vðtjÞjDtj Iiq;qðtjÞ

	 
� �
qðtjÞjvðtjÞ
� �� �

: ð15Þ

Graphically the origin of the gradient is illustrated in Fig. 1b. Under
the influence of an initially guessed pulse sequence, the density
operator evolves to some state different from the target state. In
the same time we can back-propagate the target state vðTÞ ¼ C to
the beginning of the sequence. In the optimal situation, the two
paths would be identical and their difference is used (via the gradi-
ent) to generate corrections to all rf pulses (cf. Fig. 1c) at once.

The gradient for the running cost is

@Urf

@xIiq

rf ðtjÞ
¼ 2kxIiq

rf ðtjÞDtj; ð16Þ

which may be combined directly with the gradient in Eq. (14) (or
Eq. (15)) according to formula for the total cost

Utot ¼ Ufin �Urf ð17Þ

if considered relevant.
For optimization of the effective Hamiltonian, the gradient

expressions take their origin in the cost function in Eq. (10). As it
is demonstrated elsewhere (see Refs. [8,17]), the gradient may be
derived as

@Ufin

@xIiq

rf ðtjÞ
¼ 2DtjIm UDjUN . . . Ujþ1IiqUj . . . U1

� �
UjUDh i

� �
ð18Þ

with U ¼ UN . . . U2U1 where we for simplicity did not specify the
timing limits of the propagators following the systems in Eq. (6).

We note that normalization is an issue of importance when
interpreting the efficiency of transfer between given initial and de-
sired destination operators. Different approaches has been propro-
sed in literature, all with advantages and disadvantages in different
contexts. The simplest approach will be to normalize the initial and
destination operators, e.g., Cn ¼ C=jjCjj, prior to optimization [38].
We note that we, to avoid confusion with previous releases of
SIMPSON and other types of calculations, did not implement this
normalization into the software described below.

Optimal control may alternatively be conducted using the so-
called Krotov approach [3]. We will not describe this approach in
detail in this paper, but refer the reader to a recent paper by Max-
imov et al. [27]. In most cases the GRAPE and Krotov algorithms be-
have similarly with respect to results. The Krotov approach is
typically faster for the initial part of the optimization and uses few-
er operations per iteration, which may prove particularly impor-
tant for optimizations involving larger spin systems. The Krotov
approach may also be recommendable if the running costs are
big, and pulse sequences with very low rf power consumption
are desired. However, the Krotov algorithm is not at present imple-
mented in SIMPSON, and thereby not covered by the following
description.
3. Optimal control procedures in SIMPSON

With the aim of conducting optimal control optimizations of
NMR experiments, we have added new functionality to the open-
source SIMPSON simulation software package [54] to allow for effi-
cient calculations of GRAPE gradients, and combinations of these
with conjugated gradient procedures, required for iterative deriva-
tion of optimal pulse sequences. A primary source to improved
pulse sequences by optimal control takes its origin in better com-
pensation towards artefacts such as inhomogeneous rf fields, but
the added features to evalulate this have more general interest
than just optimal control calculations. The new functionality builds
on the framework of the original SIMPSON code, which accordingly
is not changed and all previous input files and calculations can be
conducted unaltered. We note that the present combination be-
tween optimal control and SIMPSON does not consider effects from
relaxation—as addressed in numerous of our references of optimal
control in liquid-state NMR spectroscopy. We are currently devel-
oping a version of SIMPSON including relaxation and optimal
control.
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As the original SIMPSON program, and auxiliary software like
SIMMOL [59] and various optimization tools [34,60,61], all inter-
ference with the compiled SIMPSON code is effectuated via a Tcl
scripting code [62,63]. This script provides a flexible interface to
SIMPSON and execution of SIMPSON simulations integrated with
external programs. The interface to SIMPSON is a Tcl input file
name.in (where ‘‘name” is the chosen name for the file) which typ-
ically consists of four sections, either defined globally as section
{content} or in the form of standard Tcl prodecures, i.e., proc pro-
cedurename {} {content}, where the content may be several lines
with relevant instructions and the procedurename can be any
name with relevance to the content.

The standard SIMPSON input file contains four sections (proce-
durenames): (i) spinsys {. . .} with information on the spin system
(spins, interactions etc.), (ii) par {. . .} with information on external
parameters (external magnetic field strength, powder angles, ini-
tial and destination operators, rf field strengths, spinning speed
etc.), (iii) proc pulseq {} {. . .} with information about the pulse
sequence, and (iv) proc main {} {. . .} with instruction on the over-
all flow of the calculations (conduction of the SIMPSON simulation,
data processing, launching of supplementary programs etc.). The
optimal control implementation adds new commands to the par,
pulseq, and main procedures, and introduces a couple of addi-
tional procedures to provide the necessary flexibility in the pro-
gram execution. The new commands and procedures will be
described below with reference to Table 1 providing a formal
description of new commands.

In the following we will address particular attention to a set of
novel features facilitating, directly or indirectly, conduction of opti-
mal control experiment design. Many of the commands may also
be considered strengthening of standard SIMPSON applications
independently of optimal control.

3.1. Rf inhomogeneity

Previous applications of optimal control for development of
NMR experiments reveal that efficient compensation of rf inhomo-
geneity is one of the major gains obtained by exploiting the exper-
imental degrees of freedom through complicated rf pulse
sequences. Accordingly, and to provide a simple means to analyze
the performance of existing pulse sequences under inhomoge-
neous rf field conditions, without the need for reprogramming,
we have included an additional variable in the par section:

rfprof_file name_of_file.rf

where the ASCII (i.e., standard text) file name_of_file.rf has the
following structure: First line: hnumber of elements in the profilei
hnumber of channelsi, while all subsequent lines contain hrf scaling
factor for 1st channeli hsame for 2nd channeli. . .hweight factori(for rf
scaling factors, 1.0 designates nominal rf field strength). If the
rfprof_file command is not launched in the par section, the
calculation assumes homogeneous field, likewise there is no inho-
mogeneity issued for rf channels that exceed the definition in the rf
profile.

3.2. Pulse shapes

Shaped pulses become increasingly frequent in advanced NMR
experiments and are clearly an integral part of the optimal control
sequences. This calls for procedures which in an efficient and
transparent way can handle series of pulses with arbitrary ampli-
tude and phase. Within SIMPSON rf shapes can have several repre-
sentations: (i) internal in SIMPSON, in the same way as the FID, (ii)
a list variable in the Tcl environment, or (iii) a standard ASCII file
for easy communication with external programs and spectrome-
ters. Addressing the ASCII representation, the file has the form of
two columns of which the first determines the rf amplitude (in
Hz) and the second the phase (in degrees). The shape can be loaded
to a Tcl variable (e.g., sh) using

set sh [load_shape name_of_file]

The shape may also be created/derived from a Tcl list using

set sh [list2shape {{1000 0} {1500 341}. . .}]
set listsh [shape2list $sh]

where the $ in the last line is the standard Tcl way to activate the
earlier defined variable sh for the shape. Alternatively, the shape
may be established with random amplitudes and phases using

set sh [rand_shape 30000 100 10]

which creates a shape with 100 elements and maximum amplitude
30 kHz based on 10 random points equally distributed over the
length of the shape and interlaying points calculated by spline
interpolation.

With the aim of manipulating shapes (e.g., from the main sec-
tion of the input file), we introduce several other commands dem-
onstrated below (see Table 1 for details).

save_shape $rf_shape file_name
set len [shape_len $rf_shape]
set elem [shape_index $rf_shape $i -ampl]

set newshape [shape_join $rf_shape1 $rf_shape2]
set newshape [shape_dup $rf_shape 60 0.8]

set newshape [shape_create 100 -ampl 10000n
-phase 90]

shape_manipulate $rf_shape -time_reversal
set f [shape2fid $shape]
shape2bruker $rf_shape file_name $maxrf
shape2varian $rf_shape file_name
free_shape $rf_shape
free_all_shapes

Their action, respectively, corresponds to: save a shape to a file
(file_name), extract the length of a shape into a variable len, ex-
tract the amplitude of a certain element (defined by the number i),
join several shapes into a concatenated shape newshape, duplicate
a shape with flexibility to change overall phase (increase by 60 � is
used) and rf amplitudes scaled by a certain factor (given here spe-
cifically as 0.8), create shape (100 elements) with constant ampli-
tude (10,000 Hz) and phase (90 �), perform time reversal symmetry
operation on a given shape (note that the latter two commands
have much wider functionality), save a shape into the format of a
SIMPSON FID (e.g., for visualization using SIMPLOT), save the shape
in Bruker or Varian format, which allow an optional normalization
of the amplitudes invoked by $maxrf), and free a single shape or
all shapes from the memory. The backslash is the standard Tcl
nomenclature to specify that a command continues on the next
line.

The shaped pulses may be applied in the pulseq section using
the command

pulse_shaped $duration $shape1 $shape2

with the duration given in ls and the shapes (all having same
number of elements) providing action on different channels as
defined in the spinsys section, i.e., the command above applies



Table 1
Summary of new features and commands in SIMPSON program.

Parameters for the par section
string name Sets a user specific string variable with a value that can be retrieved throughout the input file by declaring

$par(name).
rfprof_file Name of the file that defines rf field inhomogeneity distributions for all channels. The file has the structure: First

line: hnumber of elements in the profilei hnumber of rf channelsi Following lines: hscaling for 1st channeli hscaling for
2nd channeli. . .hweight factori Note: (i) The channels are ordered as in the command channel. (ii) If the
command, or a file name, is not given no rf inhomogeneity is used, (iii) no rf inhomogeneity is issued for those
channels in the simulation that exceed the definition in the rf profile.

oc_tol_cg Exit tolerance on target function (default 10�6).
oc_tol_ls Exit tolerance during line-search (default 10�3).
oc_mnbrak_step Initial step size for bracketing minimum during line-search (default 10).
oc_max_iter Maximum number of iterations for oc_optimize command (default 1000).
oc_cutoff Cut off level for unsuccessful optimization trials (default 0.0).
oc_cutoff_iter Number of iterations before cut off is applied to test for unsuccessful optimization trials (default 1000).
oc_var_save_iter Number of iterations after which procedure defined in input file with name given in par(oc_var_save_proc) is

executed; it is mainly intended to save current rf shape(s) during optimization (default 1001).
oc_var_save_proc Procedure name executed every par(oc_var_save_iter) iterations; e.g., for storing rf shapes during

oc_optimize (max 64 characters, default is none).
oc_cg_min_step Minimal step taken along the search direction, otherwise optimization finishes (default 1e-3).
oc_max_brack_eval Maximum number of tagret function evaluations for bracketing algorithm during line-search; warning is issued

afterwards and optimization finishes with possibly non-ideal solution (default 100).
oc_max_brent_eval Maximum number of evaluations in Brent’s algorithm, then it uses current estimate, line-search is inexact

(default 100).
oc_verbose Causes extensive output during optimization when set to 1 (default 0).

Commands for the pulseq section
pulse_shaped dur rf_shape1 rf_shape2 . . . Extends the current propagator to include shaped pulses of duration dur (ls), and shapes determined by

rf_shape1, rf_shape2 (etc.) for all channels successively. All shapes within one pulse command need to have equal
number of elements. Duration of each element is determined automatically with respect to total duration. If no rf
irradiation is needed on any channel, use keyword nothing placed properly on the channel’s position.

avgham_static dur ham Extends the current propagator to include evolution under static Hamiltonian ham for a time period dur (ls). ham
is given in the form of operators similarly to start_operator and detect_operator, and is in frequency units
(Hz). Corresponding propagator is created and applied, specified duration is added to internal time controlling
variable.

list eulerangles Returns a list with the three Euler angles describing the orientation of the current crystallite.
store n [from] Stores the current propagator in memory slot number n (the same functionality as in original SIMPSON). If the

second argument is given, then from is used to define the propagator. from can be a number specifying matrix
memory slot, the full matrix defined by list {row row. . .} where each row is a list of elements being either re or
{re im}, specific matrix elements (elements {{i j}. . .}), or all elements excluding specific matrix elements
(notelements {{ij}. . .}). Note that internal checking of reusing the stored propagator (relevant for simulations
with spinning samples) is disabled when using the new propagator feature.

oc_acq_hermit
oc_acq_nonhermit
oc_acq_prop Nprop

Optimal control related commands replacing normal acquisition in pulse sequences. They calculate either target
function or gradients (depending what calls the pulse sequence) for a current crystallite. These commands can be
used only once in a pulse sequence script, typically at the end. oc_acq_hermit and oc_acq_nonhermit are used
when optimizing transfer between Hermitian and non-Hermitian operators, respectively; oc_acq_prop is used
for synthesis of desired propagator which is stored (via store command) in the memory slot Nprop.

Commands for the main section
rf_shape load_shape file_name Creates internal representation of a shaped pulse from a file file_name. The file contains two columns of numbers,

the first specifies a particular rf amplitude (in Hz), the second is a phase (in degrees).
rf_shape list2shape {{ampl phase}n

{ampl phase} . . .}
Creates internal representation of a shaped pulse from a list of rf amplitudes ampl (in Hz) and phases phase (in
degrees).

rf_shape rand_shape max_rf elem rand_elem Generates internal representation of a shaped pulse created from rand_elem random numbers equally distributed
over the total length of a shape consisting of elem elements. The missing elements are calculated by spline
interpolation, maximal rf amplitude is limited to max_rf (in Hz).

save_shape rf_shape file_name Saves the internal representation of a shaped pulse rf_shape to a text file file_name. The file contains two columns
of numbers, the first specifies a particular rf amplitude (in Hz), the second is a phase (in degrees).

list shape2list rf_shape Converts internal representation of a shaped pulse rf_shape into Tcl list variable structured as {ampl phase} {ampl
phase} . . ., where ampl is rf amplitude (in Hz) and phase is phase (in degrees).

desc shape2fid rf_shape [duration] [-xyj-apj-apw] Converts internal representation of a shaped pulse to a SIMPSON FID file descriptor. This enables, e.g., plotting of
the shape using SIMPLOT. The optional duration is the length of the shape in seconds, while the qualifiers -xy,
-ap, and -apw direct the FID to contain x=y-phase rf amplitude, amplitude/phase, and amplitude/wrapped-phase
(within 0—360�).

shape2bruker rf_shapefile_name [maxrf] Stores shape in Bruker shape format. Normalizes maximum rf field strength to the value of 100 in the file.
shape2varian rf_shapefile_name [maxrf] Stores shape in Varian shape format. Normalizes maximum rf field strength to the value of 1023 in the file.
elem shape_index rf_shape idx [-ampl j -phase] Extracts single element idx from a shaped pulse internally represented by rf_shape. If -ampl or -phase is given,

then just amplitude or phase is returned, both values otherwise.
rf_shape shape_join rf_shape1 rf_shape2 . . . Creates a new shape by concatenating previously defined shapes.
rf_shape shape_dup rf_shape_orig phase [scale] Creates a new shape by duplicating the rf amplitudes in rf_shape_orig and increasing phases by phase. If scale is

given the original amplitudes are multiplied by this factor.
rf_shape shape_create Nelem [-ampl exprn
j -phase expr]

Creates a new shape with Nelem elements with amplitudes and phases calculated according to given Tcl math
expression expr. Within expr, the predefined variable $i can be used to access current element index, starting
from one. Expression example: {1000.0*cos(($i-1)/100.0)}. If one or both switches with their expression are
omitted, then zero values are used.
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Table 1 (continued)

shape_manipulate rf_shapen
[-time_reversaln
j-phase_invertn
-cyclic_shift N j -ampln
expr j-phase expr]

Manipulates an existing shape rf_shape by time reversal operation, by inverting sign of all phases, by performing
circular permutation of N elements (N can be both positive or negative, then shift right or left is done), and by
performing Tcl math expression expr on current amplitudes and phases. Valid variables for expr are the amplitude
$ampl, the phase $phase and element index $i. Example: {$ampl/10.0+$i*100}. Note that operations are
performed in the same order as they are specified in the command, from left to right.

value shape_len rf_shape Gives number of elements in a shaped pulse rf_shape.
value shape_ampl rf_shape [-avgn
j -min j -max j -rms]

Gives some statistical data on amplitudes in shaped pulse rf_shape; -avg for a mean value, -min for a minimal
and -max for a maximal values, -rms for root-mean-square rf amplitude. These options can be combined in any
order.

value shape_energy rf_shape dur Gives rf energy of a shaped pulse rf_shape with duration dur (in ls).
free_shape rf_shape Destroys internal representation of a shaped pulse rf_shape and frees the allocated memory.
free_all_shapes Destroys internal representations of all shaped pulses and frees the allocated memory.
value oc_optimize rf_shape1 rf_shape2 . . .

value oc_optimize rf_shape1 -min min1n
-max max1 -rmsmax rms1 rf_shape2 . . .

Performs GRAPE optimization on shaped pulses rf_shape1, rf_shape2, . . .without or with limitations on minimal
and/or maximal rf amplitudes, and/or maximal allowed value of root-mean-squared amplitudes in the
corresponding pulse shape(s). It returns the value of target function and variables rf_shape1, rf_shape2, . . .are
updated with the resulting shaped pulses.

fid oc_evaluate_grad grad_proc For debugging purposes. Calls a Tcl procedure grad_proc that calculates gradients for optimization and returns a
fid with the gradient values.

Commands for the gradient section
oc_grad_shapes rf_shape1 . . . Tells the program which shaped pulses (rf_shape1, . . .) are optimized; it causes calculation of corresponding

gradients. This command should be used in procedure defining calculation of gradients for optimization.
oc_grad_add_energy_penalty fid rf_shape1n

lam1 rf_shape2 lam2 . . .

Calculates gradients of rf energy of shaped pulses rf_shape1, rf_shape2,. . .and adds them to previously calculated
gradients stored in fid, multiplied by penalty factors lam1, lam2, . . .correspondingly for each shape. This command
should be used in procedure defining calculation of gradients for optimization.
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to a spin-system with two channels. If no rf irradiation is needed
on any of the channels, write the word nothing at the position
of the channel in the command above.

3.3. Effective Hamiltonians and propagators

In many cases, it is relevant to address the effective Hamilto-
nian representing the evolution over a certain time period rather
than the effect of the pulse sequence as monitored directly through
the evolution of the density operator. In the context of optimal
control theory it may, for example, be interesting to optimize a cer-
tain Hamiltonian to a particular form, e.g., an isotropic mixing
Hamiltonian as discussed by Tošner et al. [17].

In the simple case of a static Hamiltonian, the following com-
mand can be used in the pulseq section

avgham_static $durationn
$ v*(I1x*I2x+I1y*I2y+I1z*I2z)

where the Hamiltonian is given in form of operators parsed in the
same way as used for the initial and destination operators. In this
example, we specifically use terms defining the isotropic mixing,
where v is the numerical value for the amplitude in frequency
units (Hz). If the Hamiltonian depends on the crystallite orienta-
tion, the crystallite Euler angles may be accessed in the pulseq

section by the newly implemented command set angles [eule-

rangles], which assigns the Tcl variable $angles to a list con-
taining the alpha, beta, and gamma angles.

For optimal control applications involving effective Hamiltoni-
ans, it is relevant to address the handling of propagators, as optimi-
zation of the effective Hamiltonian is equivalent to optimizing the
overall propagator for the time period. To facilitate the use of prop-
agators for internal calculations or propagation as part of a pulse
sequence (using the store Nprop command, where Nprop is the
number for the propagator stored in the internal memory slot as
used previously), we have added new facilities to the store com-
mand demonstrated below:

store 10 3

store 10 list {{0.5 0.5 0.5 0.5} {. . .}. . .}
store 10 elements {. . .}
store 10 notelements {. . .}
which stores the propagator defined as a previously assigned
matrix slot, as a list of matrix elements, or, if practical, as elements
(equal to 1), or excluded elements (equal to 0, 1 otherwise), respec-
tively. It should be noted that when using the new propagator fea-
tures, the standard timing check (relevant to spinning samples to
ensure that a propagator is reused at the same time of a rotor per-
iod as it was created) is disabled. Hence these commands should be
used with care for spinning samples.

3.4. The target function

To conduct optimal control optimization, we need to specify a
target function. This is accomplished in a new procedure in the
SIMPSON input file; proc target_function {} {. . .}. Within this
procedure, the user has the flexibility to modify the total cost func-
tion for the optimization. The target function is activated automat-
ically during the optimization, but as all other SIMPSON Tcl
procedures it can also be called directly, e.g., using

set tf [target_function]

In a typical state-to-state optimization, the target function (i)
sets the number of FID points to 1 (by set par(np) 1), (ii) calcu-
lates a one-point FID (by set f [fsimpson]), and (iii) returns the
value of the final cost via a variable, e.g.,

set Phi [findex $f 1 -re]

The running cost (see Eq. (11)) may be included by calculation
of the energy of the shape using

set en [shape_energy $shape $duration]
set res [expr $Phi - $lambda*$en]

where the last line subtracts the energy with a scaling factor of
lambda from the final cost (result from previous setting of Phi;
three lines above) to provide the overall cost of the shape.

3.5. The gradient for the control fields

For optimal control applications, the SIMPSON input file has to
be supplemented with a procedure proc gradient {} {. . .} to set
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up calculation of the gradients and maintain them updated
throughout the optimization in the form of an FID. This construc-
tion facilitates automatic updates, for example, adding up contri-
butions from different powder angles or different loops activated
through the optimization exactly in the same way as usually
encountered for an FID in a SIMPSON calculation. Typically, this
procedure only contains a few lines, which in the most basic setup
for optimization of the final cost alone includes: (i) definition of the
number of FID points to the number of variable elements in the rf
shapes (using proper value for par(np)), (ii) calculation of the FID
(by set f [fsimpson]), and (iii) return of the gradient through
the FID by return $f. In the case where the running cost is in-
cluded, the following line should be executed right after the
fsimpson command

oc_grad_add_energy_penalty $f $shape -$lambda

where lambda corresponds to k in Eq. (11) (or as it was used above
in procedure target_function), and should be launched with a
negative sign as it is a penalty.

The gradient procedure enables direct access to the gradients
at any point to facilitate mathematical manipulation of them.
Using the command

oc_grad_shapes $sh1 $sh2 . . .

it is possible to control which pulse shapes are to be optimized and
in what order the gradients are collected in the FID. In that way it is
feasible to maintain a series of different gradients for different
parts of the pulse sequence (vide infra). As an important asset this
enables straightforward optimization of several elements in pulse
sequences for which part of the pulse sequence is already optimal
or not amenable for optimization. In addition this facilitates opti-
mization of pulse sequences going through particular intermediate
states, which may be selected using, e.g., the SIMPSON filter

command. We note that the gradient procedure is activated auto-
matically during the optimization. In contrast to other Tcl proce-
dures it can not be launched directly from the Tcl script. If one
for debugging purposes (or the like) wants to have access to the
gradients it can be accomplished using

set fg [oc_evaluate_grad gradient]

where fg is a FID containing the gradient. In this particular case,
the command oc_grad_shapes has to be included in the gradi-

ent procedure.
Fig. 2. Block diagram of GRAPE algorithm with conjugated gradients as imple-
mented into the SIMPSON open-source software. The central part is calculation of
the step size, �, taken along the gradient/conjugated gradient direction, dir, in each
iteration (c.f. Eq. (14)).
3.6. Optimization

Assembly of the overall optimization requires cooperative ac-
tion in different places of input file, as already addressed above
in relation to the target_function and gradient procedures.
Two other parts also needs to be activated: the pulseq and the
main sections containing instructions for the specific optimiza-
tion. Furthermore, more general parameters for the optimization
process can be controlled via commands in the par section.

The pulse sequence, defined in the pulseq procedure, plays a
key role in the optimization: it serves calculation of both the target
function and the gradient. This is accomplished using two com-
mands. The first is the pulse_shaped $duration $shape1
$shape2 . . . command introduced above. During its execution,
information on to which variables the gradients should be
calculated is gathered. The second command specifies the type of
optimization, being state-to-state transfers between Hermitian or
non-Hermitian operators or optimization of a propagator for which
the relevant target function or gradients are calculated. These op-
tions are invoked using one of the new acquisition commands
(see also Table 1):

oc_acq_hermit
oc_acq_nonhermit
oc_acq_prop 10

These commands can only be used once in a pulse sequence
script (typically in the end), and effectuate calculation of the con-
trol field gradients. We note that the command reset should be
used with great care (should not be used inside an optimized se-
quence), and the use of filter and evolve commands are pro-
hibited when optimizing a desired propagator.

In the main section the optimization is activated using the
command

set tf [oc_optimize $shape1 -min 0 -max 20000n
-rmsmax 10000 $shape2 . . .]

where $shape1, $shape2 are pulse shapes that are to be opti-
mized, possibly with limitations on their maximal and/or mini-
mal amplitudes and/or maximal root-mean-square amplitudes
(any or all of the -min, -max and -rmsmax switches can be omit-
ted). The limits on rf amplitudes are supplemented to facilitate
optimization of sequences which can be practically implemented
on available experimental equipment, where limitations in peak
rf amplitude and overall energy dissemination to the probe is
often an issue (another option to limit rf energy is via a running
cost).

In the present implementation, the optimal pulse sequences
are found using GRAPE [8] in combination with conjugated gradi-
ents [32]. As illustrated in Fig. 2, the algorithm starts with evalu-
ating the target function for the initial guess (can be a sequence
of random pulses) and calculation of gradient. This gradient
determines a direction in the multivariate space along which a
line search is performed in order to determine the best value of
the”step size” � defined in Eq. (14). The line search is made in
two steps, first the optimal value is roughly localized by finding
an interval enclosing it, and secondly, the optimum is refined
using the Brent method [32]. Subsequently, the new pulse se-
quence parameters are accepted and a test for convergence is per-
formed. The next iteration starts with the calculation of the new
gradient. We use the approach of Polak and Ribiere to determine
the new search direction in the conjugated gradients method
[32].
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In the par section of the input file, it is possible to control the
optimization process described above through the change of a
number of variables with predefined values. These parameters
are summarized in Table 1.

3.7. Experimental implementation

It is beyond the scope of this paper to demonstrate experimen-
tal implementations of the optimized NMR pulse sequences. We
refer here to the description in recent papers addressing liquid-
and solid-state NMR optimal control experiments (vide supra). It
should be emphasized, however, that successful implementation
requires that: (i) the amplitudes and phases in the rf pulse wave-
forms are represented correctly at the site of the spins in the probe
(i.e., it is important that amplifiers, etc., are setup to provide a lin-
ear response to an amplitude list and that the pulse timings are
correctly implemented. Both may be tested using an oscilloscope.)
and (ii) the pulse sequences optimized to a given overall length is
only used with that length experimentally.

4. Examples

In this section, we will demonstrate the power of optimal con-
trol in NMR experiment design, its versatility, as well as some pit-
falls one can encounter during the optimizations. We present the
usage of our optimal control implementation in SIMPSON on sev-
eral examples. The full codes/input files are collected in Supple-
mentary material or can be downloaded from the SIMPSON
webpages [64].

4.1. Coherence transfer through J coupling

In our first example, we address a heteronuclear J-coupled two-
spin-1

2 system for which the aim is to optimize transfer between
transverse in-phase coherences on the two spins. The transfer is
represented in terms of the Hermitian operators Ix ! Sx. It might
be considered an academic example since optimal solutions to this
problem are very well known. The example, however, illustrates
some important features related to pulse sequence optimization.
0.5

1

1.5

ω
/2

π 
[k

H
z]

 rf

0 1 2 3 4 5 6 7
—π

π

φ 
[ra

d]

Φ

1

rms

1kHz

0.5

1

1.5

0 1 2 3 4 5 6 7
—π

π

Φ

1

rms

1kHz

1
2
3
4
5

ω
/2

π 
[k

H
z]

 rf

0 1 2 3 4 5 6 7
—π

π

time [μs]

φ 
[ra

d]

Φ

1

rms

3kHz

0.1
0.2
0.3
0.4

0 1 2 3 4 5 6 7
—π

π

time [μs]
Φ

1

rms

1kHz

a

b

Fig. 3. Pulse sequence changes observed in the course of optimal control optimization
coupling (J = 140 Hz). Amplitudes and phases are displayed in left panels (red and green
right represent the transfer efficiency (normalized final cost Ufin) and root-mean-squared
requires many iterations to reach Hartmann–Hahn match for ideal coherence transfer, wi
converges faster to the unique solution. See text for more details.
We select the total time of the shaped pulses to be T ¼ 1
J (with

J = 140 Hz) and digitize it into 150 equally long steps giving a pulse
length of D t = 47.6 ls on the two rf channels. We assume that both
nuclei are on-resonance (i.e., no chemical shifts are involved) and a
priori expect the result to reflect a Hartmann–Hahn matched con-
dition for the rf irradiation on the two rf channels. As illustrated in
Fig. 3, this prediction is fulfilled by the optimal sequence.

Before discussing the details of the result, it is relevant to first
comment on the input files. For the purpose of illustration we used
two variants: case (a), without any constraints, and case (b), with a
penalty on the accumulated rf power (or energy). The spinsys,
par, pulseq, and main sections are common for both simulations:

spinsys f
channels 1H 13C

nuclei 1H 13C

jcoupling 1 2 140 0 0 0 0 0

g

where we specifically have chosen proton and carbon nuclei as
partners in the heteronuclear spin-1

2 system, with the J coupling
being 140 Hz.

par f
spin_rate 0

crystal_file alpha0beta0

gamma_angles 1

start_operator I1x

detect_operator I2x

variable duration 1.0e6/140.0

variable NOC 150

conjugate_fid false

g

In this section we set up static sample conditions, mimicking li-
quid-state NMR experiments, by setting the spin rate to 0. We also
define the operators involved in the transfer and the variables
par(duration) and par(NOC) to specify the duration of the
experiment and the number of elements in the shaped pulses,
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th increasing rms pulse amplitudes. (b) Variant with using a penalty on the rf energy
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respectively. For optimal control calculations in SIMPSON, it is cru-
cial to set conjugate_fid to false value in order not to disturb
the gradient calculations. For case (b), we include the rf penalty by
adding line variable lam 1.0e-5.

proc pulseq fg f
global par rfsh1 rfsh2

reset

pulse_shaped $par(duration) $rfsh1 $rfsh2
oc_acq_hermit
g

The pulse sequence consists of two shaped pulses rfsh1 and
rfsh2 applied simultaneously on the two channels. The actual val-
ues in the shapes will be determined in the main section and are
passed via the global statement.

proc main fg f
global par rfsh1 rfsh2

set rfsh1 [rand_shape 1500 $par(NOC) 30]

set rfsh2 [rand_shape 1000 $par(NOC) 30]

set tfopt [oc_optimize $rfsh1 $rfsh2]
save_shape $rfsh1 $par(name)_sol_H.dat
save_shape $rfsh2 $par(name)_sol_C.dat
free_all_shapes
g

The main section controls the overall flow of the optimization.
First, two rf shapes are generated using 30 random rf amplitudes
(ranging from 0 up to 1500 or 1000 Hz) and interpolated to give
par(NOC) elements in each shape. Subsequently, the optimization
is activated using the command oc_optimize which takes the
current rf shapes as the starting point. Upon termination, rfsh1
and rfsh2 are holding the resulting pulse shapes. These are stored
using the save_shape commands. Finally, the rf shapes are re-
leased from the memory and the program quits.

Before executing the optimization, we need to define also the
target_function and gradient sections. They differ slightly
for case (a) without constraints and case (b) with rf penalty.

# case (a)

proc target_function fg f
global par

set par(np) 1

set f [fsimpson]

set Res [findex $f 1 -re]

funload $f
return [format "%.20f" $Res]
g
# case (b)

proc target_function fg f
global par rfsh1 rfsh2

set par(np) 1

set f [fsimpson]

set eff [findex $f 1 -re]

funload $f
set en1 [shape_energy $rfsh1 $par(duration)]
set en2 [shape_energy $rfsh2 $par(duration)]
set Res [expr $eff - $par(lam)* ($en1 + $en2)]
return [format "%.20f" $Res]
g

Here we set number of points in the FID to 1 and read just the
real part of the calculated FID containing the final cost as provided
through the oc_acq_hermit command in the pulseq section.
To complete the code, we need to provide definitions for the
calculations of gradients. We note that the length of the new FID
with gradient values needs to be set to the total number of pulse
elements that we wish to optimize. That is, in our present case,
the sum of individual pulse shape elements (or equivalently twice
par(NOC)).

# case (a)

proc gradient {} {
global par

set par(np) [expr 2*$par(NOC)]
set f [fsimpson]

return $f
}
# case (b)

proc gradient {} {
global par rfsh1 rfsh2

set par(np) [expr 2*$par(NOC)]]
set f [fsimpson]

oc_grad_add_energy_penalty $f $rfsh1n
-$par(lam) $rfsh2 -$par(lam)

return $f
}

where the oc_grad_add_energy_penalty command in case (b)
corrects the gradients to take into account the running cost
penalty.

The entire code is stored in a file, e.g., example.in, and can be
executed by SIMPSON using the command

> simpson example.in

A typical output from the program is:

Argument 1: shape slot 0, min = 0, max = 1e + 06

Argument 2: shape slot 1, min = 0, max = 1e + 06

Number of variables is 300

Global tolerance on target function is 1e-06

Maximal number of iterations is 1000

Optimization is terminated after 1000 iterations if

target function is not higher than 0

Every 1001 iterations procedure’none’ (for storing

variables) is executed

Minimal step size along conjugated gradient is 0.001

Tolerance for line-search (Brent) is 0.001

Line-search will terminate after reaching 100

evaluations

Initial step for bracketing minimum is 10

Bracketing will fail after conducting 100

evaluations

Initial target function: �0.0027585696
Iter 1: tf = 0.0870565691 (step = 2285.18)

Iter 2: tf = 0.1550790844 (step = 306.365)

. . .

Iter 643: tf=0.9988834753 (step=90.1747)

Done by reaching target function tolerance limit.

This output provides a summary of the parameters controlling
the optimization process (in the present case default values are
used; see Table 1 for a complete list of parameters and information
on how to change them) followed by progress of the target func-
tion (tf) throughout the iterations (the value in parenthesis indi-
cates the size of the step � taken along the search direction; a
more detailed progress report can be obtained by setting the
par(oc_verbose) flag).
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In case (a), the theoretical maximum value for the target func-
tion (i.e., the final cost) is 1.0, indicating that the coherence was
transferred with 100% efficiency in full agreement with a priori
knowledge, e.g., from unitary bounds of spin dynamics. This objec-
tive is met after many iterations, depending on initial guess. As it is
demonstrated in Fig. 3a, initially different pulse sequences tend to
approach each other in order to establish the Hartmann–Hahn
match between the rf fields on the two channels. In this particular
case, the pulse amplitudes are not limited and can easily rise. The
resulting pulse sequences are actually demanding more rf power
than the initial ones. If we repeat the calculation with different ini-
tial guesses, different solutions will be found. The ensemble of pos-
sible solutions is infinite, with the only common feature that those
observed all reached Hartmann–Hahn match between the rf fields
on the two rf channels.

In case (b), we wish to find among the many solutions one
that requires minimal rf power. To accomplish this, a penalty
on the accumulated rf energy is included in the cost function.
The illustrative result is presented in Fig. 3b. We observe a faster
convergence (perhaps an attribute of this specific problem) to a
unique solution, independent of the initial guesses (this is an
indication of a global optimum, although our approach does
not contain a guarantee this is reached). As the iterations pro-
ceed, the rf pulse amplitudes represented as root-mean-square
(rms) amplitudes are decreasing while the transfer efficiency
rises. Some care needs to be taken if one uses rf penalty. A
too large scaling factor k may lead to compromises on the effi-
ciency (i.e., the value of the final cost) while too small k does
not impose real rf restrictions. The presented case, however, is
not particularly sensitive to the exact value and all our optimiza-
tions converged to the solution presented in Fig. 3b. It should be
noted that this pulse shape is superior to an alternative con-
stant-amplitude Hartmann–Hahn match pulse sequence in terms
of accumulated rf power. The former sequence is represented by
an rms rf field amplitude of 52 Hz and an effective Hamiltonian
H ¼ pJðIzSz þ IySyÞ while the latter would require a pulse rms
amplitude of at least 60 Hz to provide transfer through the effec-
tive Hamiltonian H ¼ pJ½2IzSz þ

ffiffi
3
p

4 ðIx þ SxÞ�.

4.2. Broadband inversion pulses for liquid-state NMR

For successful experimental implementations, it is obviously
necessary to design robust pulse sequences that are capable of
achieving the goals not only for a single specific set of spin system
parameters, as used in our first example. Accordingly, our next
example illustrates how one can set up optimization of state-to-
state transfers for a range of conditions. We select broadband
inversion pulses for liquid-state NMR applications as an example,
for which we demonstrate possible problems and efficient solu-
tions. We note that the optimal control problem of broadband exci-
tation and inversion pulses has previously been addressed by
Kobzar et al. [65,66], and we take inspiration from their work in
the present example.

Our goal is to find a shaped rf pulse that inverts the longitudi-
nal polarization completely (Iz ! �Iz) regardless of the rf offset
within a range of �50 kHz while keeping the accumulated rf
power reasonably low. Extrapolating the results of Kobzar et al.
[65] to estimate a minimal pulse length for the given offset range
and extending this to a slightly longer pulse T = 600 ls, divided
into 600 steps Dt = 1 ls), we provide some flexibility for the pulse
to reach an optimum for a broad range of conditions. In this
example, the spinsys section introduces just one nucleus with
zero chemical shift, while the pulseq and main sections are
identical to the previous example with the exception that we deal
with a single-rf-channel experiment. In order to optimize the
pulse for many offsets simultaneously, we need to modify target
function and the gradient calculations to include summation
loops accommodating the relevant range of chemical shift values
(equivalent to offsets):
proc target_function {} {
global par lims

set par(np) 1

set Res 0.0

foreach shft $lims {
setf [fsimpson[list[listshift_1_iso $shft]]]
set dum [findex $f 1 -re]

set Res [expr $Res+$dum]
funload $f

}
return [format "%.20f" $Res]

}
proc gradient {} {
global par lims

set par(np) $par(NOC)
set f [fcreate -np $par(NOC) -sw $par(sw)]
foreach shft $lims {

setg [fsimpson[list[listshift_1_iso $shft]]]
fadd $f $g
funload $g

}
return $f

}

In this implementation, the Tcl list variable lims holds a set of
offset values spanning the desired range of ±(50 kHz. The com-
mand fsimpson, which invokes calculation of either the final cost
or the gradients, is executed several times with different spin sys-
tem parameter shift_1_iso defining the chemical shift of the nu-
cleus (cf., Ref. [54]; in this way any spin system parameter can be
varied. An alternative implementation could make use of the off-
set command instead). The results for the various chemical shifts
are added as numbers in case of the target function, or as FIDs in
case of the gradients using standard Tcl or original SIMPSON com-
mands [54].

Our first calculation involves 11 offset values separated by
10 kHz. The resulting pulse sequence is presented in Fig. 4a
along with its inversion profile. It is evident that although the
target function reaches its global extremum the result is not
practically useful. This is despite the fact that the optimal con-
trol optimization provided us with a perfect and exact answer
to our quest: optimized inversion for a specific set of offsets.
In between the specified offset points, however, the effect is
unpredictable. The obvious remedy is to use a more dense set
of offset values. Accordingly, in a second attempt we use 101
offsets separated by 1 kHz which leads to a satisfactory result
as illustrated in Fig. 4b. Although it is not a problem in this par-
ticular case, we note that optimizations with dense parameter
variation may become quite time demanding. In such cases, it
is advisable to increase the number of check points gradually, al-
ways taking the result of the previous optimization as the initial
guess to the next stage. The average inversion efficiency over the
whole ±50 kHz range is excellent (amounts to 0.9997) and rf rms
amplitude is about 13 kHz with peaks values in the range of
30 kHz. The latter may not be acceptable with respect to hard-
ware or sample heating, implying that we conducted one more
optimization with an upper limit of 10 kHz for the rf amplitudes.
This requires only a minor modification of the SIMPSON code in
the main section:

set tf [oc_optimize $rfsh -max 10000]
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Fig. 4. Optimal control design of broadband inversion pulses with a bandwidth of
100 kHz. The upper panels show the resulting pulse sequences (amplitude and
phase), while the lower panels examine their effective Iz inversion profile. (a) Good
inversion is achieved only for the limited set of conditions (i.e., the 11 chemical
shifts) used during optimization. (b) Perfect results can be obtained when the set of
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The resulting pulse sequence, shown in Fig. 4c, demonstrates
that a fairly good inversion with an average efficiency of 0.977
can be obtained under these limiting conditions. Following this, a
natural question would be: How far can we squeeze the rf power
demands, while maintaining an acceptable degree of inversion?
Some hint is provided in our final demonstration in this section
where we include rf penalty in the optimization. The result is
shown in Fig. 4d. With a scaling factor of k ¼ 10�5 we are forced
to make a trade off between efficiency and rf power: the rms
amplitude is below 7.5 kHz but the average inversion efficiency
is only 0.912. On basis of all optimizations, we estimate that the
rf limit is somewhere around 10 kHz for the present offset and
pulse length.

4.3. Broadband refocusing pulses

The rf pulses developed in the previous section suffer from an
important limitation: they can be used only to invert longitudi-
nal polarization Iz ! �Iz, while the effect on the other compo-
nents Ix and Iy is undefined. Accordingly a refined goal could
be to find a true broadband refocusing pulse that, for example,
acts as an ideal x-phase p-pulse. This implies that we wish
simultaneously to accomplish the transfers Ix ! Ix, Iy ! �Iy,
and Iz ! �Iz. One can readily implement such an optimization
by including other summation loops for the two additional
transfers to the code of previous example. However, we take an-
other approach involving the synthesis of a px-pulse propagator
of the form UD ¼ expf�ipIxg. In this manner, we demonstrate
another important category of optimal control implementations
in SIMPSON.

The optimization of a state-to-state transfer may readily be
transformed into a propagator optimization simply by modifying
the pulseq section. In the case it can be coded as follows:

proc pulseq {} {
global par rfsh

reset

avgham_static 0.5e6 I1x

store 10

reset

pulse_shaped $par(duration) $rfsh
oc_acq_prop 10

}

The pulseq now contains two parts. First, the desired propaga-
tor is prepared for a given spin system using the command avg-

ham_static. Its first argument defines the overall time evolution
interval (0.5 s) during which the effective Hamiltonian
Heff ¼ 2pmIx (with m = 1 Hz) is active. The propagator is stored in
the memory slot number 10. Second, the propagator representing
the effect of the shaped pulse is created and its similarity with
the desired one is calculated using the command oc_acq_prop
(according to Eq. (10)). Please note that the reset command is
needed to separate the two parts of the code.

It turns out that calculation of broadband refocusing pulses is
not straightforward with respect to settings of the offset range,
the duration of the pulse, and the maximal rf amplitude. Here we
present our preliminary results for a 200 ls long pulse working
within the offset range �12.5 kHz with the maximum rf amplitude
limited to 15 kHz. A detailed study devoted to this problem will be
presented elsewhere. The optimizations converged to a shape
shown in Fig. 5a. The performance of the pulse was verified by cal-
culating its effect on the three Cartesian operators, as illustrated in
Fig. 5b. It is apparent that Ix is left unperturbed with the final value
of 0.998 (averaged over the desired offset range), while Iy and Iz are
inverted to average values of �0.997 and �0.998, respectively.

4.4. Application to coherence transfer in solid-state NMR

In the previous examples, we have demonstrated that optimal
control can provide proper solutions not only for a single set of spin
system parameters but also for a range of offsets. The next chal-
lenging task is to use optimal control in NMR of rotating solids,
imposing periodical variations to internal Hamiltonians as well
as a wide distribution of Hamiltonians due to anisotropic nuclear
spin interactions. In solid-state NMR the anisotropy of the Hamil-
tonian adds complexity to pulse sequence design if the goal is to
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bring all ‘‘crystallites” to the same ending point in terms of a fi-
nal state or a desired effective Hamiltonian. Unlike liquid-state
NMR parameter variations, the spread in sizes for fundamental
couplings used for, e.g., coherence transfer through dipole–dipole
interactions spans from 0 to a given maximum value determined
by the internuclear distance. As so it appears evident that opti-
mal control in combination with the SIMPSON simulation pro-
gram would be of interest as a new way to design efficient
experiments using more experimental degrees of freedom to
cope with the challenges of anisotropic nuclear spin interactions
and sample rotation. This applies not least in cases where the
interest is to design evolution under Hamiltonians that does
not match the typical zero- and double-quantum operators typ-
ical for the vast majority of dipolar recoupling experiments. In
such cases analytical treatment becomes exceedingly difficult
[17].

With reference to previous accounts on optimal control in solid-
state NMR [14–20], we here illustrate the principles for one simple
case: Ix ! Sx transfer of coherence from one ensemble of spins to
another in a powder sample through dipole–dipole coupling under
fast sample spinning conditions and in presence of variations in
isotropic as well as anisotropic nuclear spin interactions. Our ob-
ject will be a typical 13C–15N spin-pair in a peptide bond of a solid
protein. This calculation closely follows the work of Kehlet et al.
[19] where novel sequences for nitrogen-to-carbon coherence
transfer in NCO and NCA experiments were developed using opti-
mal control.

For solid-state NMR applications, we need to introduce aniso-
tropic nuclear spin interactions through the parameters in the
spinsys section, as exemplified by

shift 1 0 99p 0.19 -90 -90 -17

shift 2 0 -76p 0.90 0 0 9

dipole 1 2 1176 0 90 57

where the shift parameter uses the entries nucleus, isotropic shift,
anisotropic shift, asymmetry parameter, and three Euler angles
defining the orientation of the shielding tensor relative to a molec-
ular frame. Correspondingly, the dipole–dipole coupling is defined
through the two nuclei, the dipolar coupling constant, and three
Euler angles. Details can be found in Ref. [54].

In the par section, we add the following entries

spin_rate 12000

crystal_file rep144

gamma_angles 10

rfprof_file lorentz5p
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Fig. 6. Results of optimal control design of pulse sequences for 15N ? 13C (carbonyl) coh
solid powder sample subjected to magic-angle-spinning with a frequency of 12 kHz at
efficiency using ideal experimental conditions; several calculations were started for each
of the robustness toward rf inhomogeneity; the optimization assumed a 2.4 ms duration
width, as demonstrated by shaded areas in the graph. (c) The same pulse sequence was al
towards this parameter is presented.
to specify the sample spinning frequency to 12 kHz, that powder
averaging is performed with 144 REPULSION [67] a, b crystallite
angles and 10 c angles. In this specific case a 5% Lorentzian rf inho-
mogeneity profile is invoked. We note throughout the optimal con-
trol sequences the use of fast symmetry-based propagation
methods such as c-COMPUTE [68] should generally be avoided or
they should be used with great care due to lack of symmetry in
OC pulse sequences. This implies that the method command takes
its default value direct (not invoking special symmetry proper-
ties to speed up calculations; and accordingly not listed above)
as described in more detail in Ref. [54].

The next example attempts to answer the question what is the
maximum efficiency, as a function of pulse sequence duration. The
optimizations were conducted repeatedly with different number
of elements in shaped pulses applied on the 15N and 13C rf chan-
nels and different sequences were obtained for each duration.
The overall trend of maximal efficiency is shown in Fig. 6a clearly
illustrating that the transfer efficiency may monotonically in-
creased towards 100% (not shown) by increasing the length of
the pulse sequence. It may be formulated that optimal control in
this sense spans the gap between typical fast c-encoded coherence
transfer [44,69] and the somewhat slower coherence transfer by
adiabatic methods [70] while typically keeping the rf field
consumption considerably lower than any of these methods
[14,19,33].

In practice, it is desirable to conduct coherence transfer apply-
ing for specific chemical shift ranges for the initial and target spins
rather than produce sequences that are either too narrow-banded
or too broad-banded. The latter may cause transfer to undesired
spins, thereby reducing the overall transfer efficiency or rendering
spectral interpretation ambiguous. Furthermore, excessively
broadbanded pulse sequences are often more demanding with re-
spect to consumed rf power, and accordingly more risky with re-
spect to sample heating for lossy samples. Addressing the
popular ‘‘double cross polarization experiment” (DCP) from Schae-
fer and coworkers [69] the offset dependent excitation profile may
be altered using ramped rf irradiation [71] or more advanced
amplitude and phase-modulated rf irradiation schemes as pro-
posed by Bjerring et al. [72–74]. In addition to the rf inhomogene-
ity compensation, already introduced above, the optimization over
a specific offset ranges corresponding, e.g., to NCA and NCO trans-
fers, may readily be accomplished by introducing the appropriate
offset ranges in the target_function and gradient sections
as discussed above in the context of broadband rf pulses and
accomplished for the specific case of a NCO transfer in the Supple-
mentary material. The resulting pulse sequence provides an rf
inhomogeneity profile as illustrated in Fig. 6b (contour plot calcu-
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of the pulse sequence and rf profile approximated by Lorentzian shape with 5% half-
so optimized for a given spread in resonance offsets (shaded area) and its sensitivity
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lated without rf inhomogeneity involved using different scaling
factors on the rf field strengths used on the two rf channels) and
a 13C, 15N offset profile as illustrated in Fig. 6c.

4.5. Synthesis of quantum-gate propagators

In a different context, the optimal control procedures imple-
mented in SIMPSON also provides a perfect tool for developing
practical pulse sequences for quantum information processors
(QIP) based on NMR spectroscopy. QIP requires selective opera-
tions traditionally executed using long, soft rf pulses that in
turn introduces problems of decoherence and unwanted inter-
ference when applied simultaneously on different spins, spoiling
the desired action. Recently, in the area of QIP, the so called
strongly modulating pulses (SMP), in the context of NMR spec-
troscopy known for many years as composite pulses, were pro-
posed to tackle these difficulties [75]. This was done by
optimizing a few parameters of the composite pulses providing
the desired quantum gate propagator, in the full analogy to Eq.
(10). Optimal values for amplitudes, phases, frequencies and
durations of several element pulses were calculated using the
Simplex non-linear optimization method. The approach based
on optimal control is more appealing due to its ability to treat
hundreds-to-thousands of variables effectively and fast. The
straightforward establishment of optimal control SIMPSON cal-
culations opens the possibilities to prepare high fidelity quan-
tum gates tailored precisely for a given molecule and tackling
specific experimental issues like rf inhomogeneity. Also, applica-
tions of QIP using solid-state NMR are readily and immediately
available.
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Fig. 7. Optimization of total propagators to implement several quantum operations
on 23Na nuclei in a crystal with effective quadrupolar coupling constant
xQ=2p ¼ 84 kHz. The propagators, given in terms of their matrix elements, and
corresponding shaped pulses are shown. The durations of the shaped pulses are
substantially shorter than those presented in Ref. [76], obtained using a so-called
strongly modulating pulses optimization procedure.
The paper of Fortunato et al. [75] addresses optimization of
spin selective pulses, or gates, that allow arbitrary rotations of
each spin around independent single-spin axes, while refocusing
the internal evolution. The durations of the resulting high-power
SMP are decreased by almost an order of magnitude compared
to previous soft rf pulses, thereby significantly reducing the ef-
fects from relaxation. This work is essentially equivalent to our
example with refocusing pulse, just on a more complicated spin
system and without consideration of a wide offset range. For our
present demonstration, we choose another problem that was
treated by Kampermann and Veeman [76] where a single SMP
was optimized to provide a whole quantum algorithm at once.
The authors consider 23Na nuclei (spin I ¼ 3

2) in a single crystal
of NaNO3 oriented in such a way that the effectuve quadrupolar
coupling constant was xQ=2p ¼ 84 kHz. Several SMP’s were
optimized for different quantum gates and we repeat their calcu-
lation just for the quantum Fourier transform (QFT), Grover, and
Deutsch operations. The corresponding propagators are explicitly
described in the paper by matrix elements and are reproduced
here in Fig. 7. We also make an attempt to find shaped pulses
with minimal durations.

After providing the relevant spin system parameters in the
SIMPSON input file, we need to modify the pulseq section to set
up desired propagator. For this purpose, we use the new function-
ality of the store command that enables storing a propagator de-
scribed by matrix elements. We instruct the program to repeat
optimizations with the shape duration decreased in steps of 1 ls
(and consequently lowered number of element pulses) untill the
desired propagator is reproduced with a fidelity better than
0.999 (equivalent to the final cost defined in Eq. (10) normalized
by matrix dimension). Compressing the total evolution time obvi-
ously may lead to an increase in the rf power demands and there-
fore we set upper limit on rf pulse amplitudes to 20 kHz. This value
was chosen to facilitate comparison with the results of Kamper-
mann and Veeman [76], whose QFT pulse sequence used an essen-
tially constant rf amplitude of 19 kHz. Our results, presented in
Fig. 7, demonstrates substantially decreased minimal durations of
the shaped rf pulses while maintaining the same fidelity as in
the original work. Our sequences implement QFT, Grover, and Deu-
tsch operations within 52, 44, and 47 ls, respectively, which com-
pares favourably with the durations of 89.6, 94.8, and 55.1 ls given
by Kampermann and Veeman [76]. We obtained these superior
timings even without using temporal variables explicitly, which
is in direct contrast to a SMP optimization strategy (duration of
each element is variable).

5. Conclusions

In conclusion, we have presented the implementation of opti-
mal control procedures into the SIMPSON open source software.
The resulting tool has been demonstrated useful for experiment
design in various cases of relevance for liquid- and solid-state
NMR spectroscopy. Obviously, the range of applications is much
wider, including magnetic resonance imaging and more exotic
combinations between nuclear magnetic resonance and other
spectroscopies. The present paper serves as a manual to the opti-
mal control containing SIMPSON software. We anticipate that this
tool will find widespread application in the NMR community as a
means to design custom-made pulse sequences for a wide range
of applications. This will hopefully lead to a new generation of
optimal NMR experiments to be used over the full range of NMR
disciplines known so far. In addition, the tool may facilitate studies
of more fundamental character, including determination of theo-
retical maximum values for transformation between spin opera-
tors and new inspiration to analytical design strategies reaching
these.
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